

13290 Evening Creek Drive S, San Diego CA 92128 (858) 480-2000 (858) 480-2000 (Cambridge Com

Webinar: **Design Sensitivity and Optimization with Simcenter Nastran and Femap**

Anthony Ricciardi, ATA Engineering July 23rd, 2020

in ata-engineering **D** @ATAEngineering

ATA Provides High-Value Engineering Services With Expertise in Design, Analysis, and Test

ATA Engineering helps to overcome product design challenges across a range of industries

ATA is a Value-Added Reseller for Siemens Digital Industries Software

ATA offers training, free resources, and hotline support for a variety of Siemens products.

- \triangleright Siemens product lines we support include:
	- ▶ Simcenter STAR-CCM+
	- \triangleright Simcenter Femap
	- Simcenter Nastran (formerly NX Nastran)
	- \triangleright Simcenter 3D
	- \triangleright NX CAD & CAM
	- \triangleright Teamcenter
	- \triangleright Solid Edge
- Contact the hotline at 877-ATA-4CAE or

<http://ata-plmsoftware.com/support>

- Developer of the official Simcenter Nastran training materials
- Preferred North American provider of Simcenter Nastran training
- Recognized as Smart Expert Partner with validated expertise in

Femap, STAR-CCM+, and Simcenter 3D

3

Visit Our Website for Product Information and Free Resources

www.ata-plmsoftware.com

13290 Evening Creek Drive S, San Diego CA 92128 (858) 480-2000 (858) 480-2000 (Cambridge Com

Webinar: **Design Sensitivity and Optimization with Simcenter Nastran and Femap**

Anthony Ricciardi, ATA Engineering July 23rd, 2020

in ata-engineering **D** @ATAEngineering

Target Audiences and Objectives

Outline

Design Sensitivity and Optimization with Simcenter Nastran and Femap

>Fundamentals

Simcenter Nastran & Femap Capabilities

≻Examples

- 1. Sizing a beam cross-section
	- Graphical solution based on hand calculations
	- \triangleright Femap with Simcenter Nastran solution
- 2. Topology optimization of a cantilever structure
	- \triangleright Sigmund 99-line topology optimization reference solution
	- \triangleright Femap with Simcenter Nastran solution
- 3. Sizing an aircraft wing structure using Femap with Simcenter Nastran
	- \triangleright Many design variables
	- \triangleright Multiple subcase types

What are Design Sensitivity and Design Optimization?

8

Design sensitivity analysis computes the rates of change of structural responses with respect to changes in design variables.

- These design variables can be used to represent shell thicknesses, beam cross sectional dimensions, etc.
- \triangleright In civil engineering, we may be interested in how changes in the deflection of a bridge span can be affected by changes in the dimensions of the bridge sections.
- In automotive design, we may want to investigate changes in cabin resonant frequencies given changes in panel thicknesses.
- These rates of change (what we call *derivatives* in calculus) are called design sensitivities or design gradients.
- **Design optimization** is an automated process that uses an optimizer to generate improved designs.
	- An optimizer implements a formal algorithm to search for the *best* design.
	- Gradient-based optimization algorithms use design sensitivities to guide this search process.
	- Simcenter Nastran uses gradient-based optimization algorithms for design optimization.

9

Why Use Design Sensitivity and Optimization?

Design sensitivity analysis can be used for:

- Improving understanding of how a system response changes with respect to adjustable parameters
- Approximate/reduced-order model creation
- Uncertainty quantification
- Gradient-based optimization

Design optimization can be used for:

- Producing the best design that satisfies requirements
- Performing trade-off or feasibility studies
- Updating models to correlate with test data

Engineering Analysis and Optimization

Physical system and design problem

- A physical system that exists or design that will exist in reality
- Example:
	- Physical system: loaded flat plate with a hole
	- Design problem: the hole radius is to be optimized to minimize the weight of the plate while not exceeding allowable stress

Analysis model

- A mathematical idealization of a physical system
- Provides response predictions
- Parametrized by design variables for optimization

Design model

• A formal statement of a the design objective, design variables, and constraints

Reference: *Simcenter Nastran Design Sensitivity and Optimization User's Guide*

Basic Optimization Problem Statement

 $f(\vec{x})$
 $\vec{x} = \{x_1, x_2, ..., x_n\}$
 $\vec{p} = \{p_1(\vec{x}), p_2(\vec{x}), ..., p_m(\vec{x})\}$ $f(\vec{x})$ $\vec{x} = \{x_1, x_2, ..., x_n\}$ $g_j(\vec{x}) \leq 0 \quad j = 1, ..., n_g$ $h_k(\vec{x}) = 0 \quad k = 1, ..., n_h$ $x_i^l \leq x_i \leq x_i^u \quad i = 1, ..., n$ What: Minimize the objective function: **>How:** > Design variables: Design properties: Subject to: > Inequality constraints: \triangleright Equality constraints: **> Bounds:**

This basic optimization problem can be solved using Simcenter Nastran. Femap and Simcenter 3D support optimization preprocessing.

12

Simcenter Nastran Design Optimization Procedure

Simcenter Nastran Design Model Definition

(Not all capabilities shown)

Simcenter Nastran Capabilities (1)

Optimization Analysis Disciplines Design Variables

- Design optimization only
- f Native Femap support (DFREQ has native Femap support for design optimization only)
- Controlled using ANALYSIS=TYPE case control command.
- Can be defined at subcase level to simultaneously optimize with multiple analysis types.

- **DESVAR** design variables and bounds.
- **DDVAL** optional discrete variable values.
- **DLINK** design variable linking.

Design-to-Model Relations

- **DVCREL***i* Design-Variable-Connectivity RELation
- **DVMREL***i* Design-Variable-Material RELation
- **DVPREL***i* Design-Variable-Property RELation
- Basic (or type-1 entries) support linear design variable-to-property relations.
- **DEQATN** (Design EQUATION and type-2) entries can optionally be used for arbitrary relationships.
- **DVGRID, DVBSHAP**, and **DVSHAP** are used for shape optimization.
- **DVEREL1** automatically creates shell element thickness design variables.
- **DVTREL1** automatically creates design variables for topology optimization.

Simcenter Nastran Capabilities (2)

Design Response Quantities

- **DRESP1** supports 40 easily accessible response types:
	- CEIG, CFAILURE, CMPLNCE, CSTRAIN, CSTRESS, DISP, DWEIGHT, EIGN, ERP, ESE, FLUTTER, FORCE, FRACCL, FRDISP, FREQ, FRFORC, FRSPCF, FRSTRE, FRVELO, LAMA, PRES, PSDACCL, PSDDISP, PSDVELO, RMSACCL, RMSDISP, RMSVELO, SPCFORCE, STABDER, STRAIN, STRESS, TACCL, TDISP, TFORC, TRIM, TSPCF, TSTRE, TVELO, VOLUME, WEIGHT
	- See Simcenter Nastran Quick Reference Guide for details.
- **DRESP2** Defines arbitrary equation responses that are used for the objective and/or design constraints, or for sensitivity analysis purposes.
- **DRESP3** Defines arbitrary responses to be evaluated in an external user-supplied program.

Objective and Constraint Definitions

- Case control commands are used to specify a DRESPi entry that is the objective function and DCONSR or DCONADD entry that define constraints.
- **DCONSTR** defines design constraints, references DRESPi.
- **DCONADD** defines constraint set combination.
- Constraints can be subcase-specific.

Topology-Optimization-Specific Entries

- **DVTREL1** automatically creates design variables for topology optimization.
- **DMRLAW** controls the relation between material properties and the normalized mass density.
- **DMNCON** defines a manufacturing constraints for topology optimization.

15

Simcenter Nastran Capabilities (3)

Design Sensitivity Output

- Request output using either:
	- **DSAPRT** Case control command
	- **PARAM, OPTEXIT** Bulk data entry
- Various output formats supported
- Can request sensitivities only (no optimization)
	- User still needs to set up design variables and responses
	- General recommendation:
		- Define a violated constraint for each response quantity you require sensitivities for
		- Define a dummy objective function (e.g., weight)

16

Femap and Simcenter 3D Optimization Preprocessing

Live Femap Optimization Interface Walkthrough

Beam Sizing Optimization

Dimensions and Properties Transform Blue Adding Conditions Reproduce Transform Statement

Objective: Minimize volume

Design variables: *b, h*

Constraints: $\sigma \leq 200e6$ Pa (abs. due to bending) $\delta \leq 0.1$ m (abs. due do bending)

Bounds: $0.01 \text{ m} \leq b \leq 0.30 \text{ m}$ $0.01 \text{ m} \leq h \leq 0.05 \text{ m}$

Response Solution Using Hand Calculations

Objective: minimize volume = *lbh*

volume = 0.0213 m^3

Beam Sizing Optimization using Femap and Simcenter Nastran

Dimensions and Properties Loading Conditions

Problem Statement

Objective: Minimize volume

Design variables: *b, h*

Constraints: $\sigma \leq 200e6$ Pa (abs. due to bending) $\delta \leq 0.1$ m (abs. due do bending)

Bounds: $0.01 \text{ m} \leq b \leq 0.05 \text{ m}$ $0.01 \text{ m} \leq h \leq 0.30 \text{ m}$

Live Femap Demonstration

Topology Optimization Example

Sigmund Cantilever Beam

[Ole Sigmun](http://www.dtu.dk/english/service/phonebook/person?id=2278&cpid=927&tab=1)[d. "A 99 line topology optimization code](https://www.topopt.mek.dtu.dk/-/media/Subsites/topopt/apps/dokumenter-og-filer-til-apps/matlab-1-.ashx?la=da&hash=7DE5B57D1DB379E9D20D1BD191659E69E6F6BBC5) written in MATLAB." Structural and Multidisciplinary Optimization 21(2), 2001, pp. 120-127).

Fig. 2 Topology optimization of a cantilever beam. Left: design domain and right: topology optimized beam

```
nelx = 32; % number of elements in the horizontal direction
nely = 20; % number of elements in the horizontal direction
volfrac = 0.4;% volume fraction
top(nelx,nely,volfrac,3.0,1.5)
```
Live Femap Demonstration

Final TEL Design

Topology Optimization Case Study

Transporter/Erector/Launcher (TEL) system for the Antares

Background

- ATA Engineering and its engineering and manufacturing partner, Martinez & Turek, were selected to design, engineer, manufacture, install, and test the TEL.
- Topology optimization was used to rapidly explore topologies.

Meshed design space of strongback

Topology optimization results

http://www.ata-e.com/wp-content/uploads/2019/12/TEL-Case-Study_2020.pdf#new_tab

Sizing an Aircraft Wing Structure Using Femap With Simcenter Nastran

 $C_r = b/6$ (rood chord)

$C_t = b/16$ (tip chord)

Problem Statement

Objective: Minimize weight

Design variables: wing skin, spar, and rib thicknesses (26 total)

Constraints: $\sigma_{vm} \leq 30$ ksi (4.4*g* maneuver load) $f_1 \geq 8$ Hz

Live Femap Demonstration Optimization with 26 design variables two analysis types

Questions?

Submit questions in the chat or unmute yourself now

Zoom Application Nation News Application News Application News Application News Application News Application N

Contact Us 26

13290 Evening Creek Drive S San Diego, CA 92128

(858) 480-2000

plm_sales@ata-e.com

www.ata-e.com www.ata-plmsoftware.com

@ATAEngineering

ata-engineering

