
Webinar: **Grounding and Groundchecks**

Michelle DeRienzo, ATA Engineering March 17th, 2020

ATA Provides High-Value Engineering Services With Expertise in Design, Analysis, and Test

ATA Engineering helps to overcome product design challenges across a range of industries

Aerospace

Robotics & Controls

Themed Entertainment

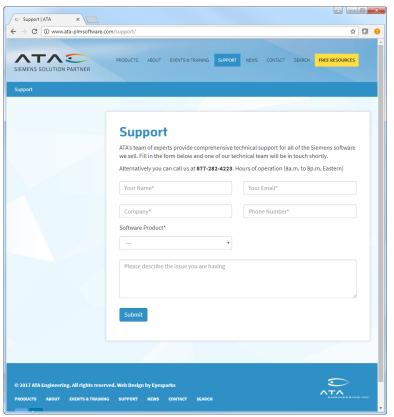
Industrial & Mining Equipment

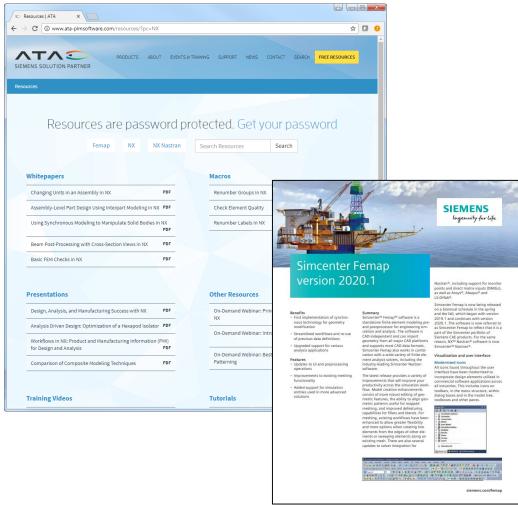
Consumer Products

ATA is a Value-Added Reseller for Siemens Digital Industries Software

ATA offers training, free resources, and hotline support for a variety of Siemens products.

- > Siemens product lines we support include:
 - ➤ Simcenter STAR-CCM+
 - Simcenter Femap
 - Simcenter Nastran (formerly NX Nastran)
 - ➤ Simcenter 3D
 - > NX CAD & CAM
 - > Teamcenter
 - > Solid Edge
- Contact the hotline at 877-ATA-4CAE or http://ata-plmsoftware.com/support
- > Developer of the official Simcenter Nastran training materials
- Preferred North American provider of Simcenter Nastran training


SIEMENS


Recognized as Smart Expert Partner with validated expertise in Femap and STAR-CCM+
Solution Partner

Visit Our Website for Product Information and Free Resources

www.ata-plmsoftware.com



Webinar: **Grounding and Groundchecks**

Michelle DeRienzo, ATA Engineering March 17th, 2020

www.ata-e.com

in ata-engineering

Introduction

- ➤ Ground checks are standard model checks that should be performed on every model
- >This presentation is a "deep dive" into grounding
- ➤ Goal is to explain grounding and ground checks in detail, so even experienced users might learn something new

What is Grounding?

- ➤If the model cannot move without straining, then you have grounding.
- ➤Sometimes you want grounding!
 - > Ex: boundary conditions
- ➤Sometimes you don't...
 - > It could indicate that the model has artificial internal loads
 - > Then your model can give inaccurate results
- >A model has grounding if it has:
 - ➤ Constraints
 - ➤ Bad element formulation/quality
 - > Poorly defined connections
 - > Matrix ill-conditioning
 - > Artificial internal loading in a FEM from motion

Examples of What Can Cause Grounding

- ➤ Springs
 - > Coincident springs are not exactly coincident
 - CELAS springs have non-coincident nodes (use CBUSH or make nodes coincident)
 - > CELAS springs have incompatible displacement coordinate systems (use CBUSH)
- > Anything that is too stiff
 - > Including springs, bars, beams
 - > Remember: bar stiffness depends on both geometry & material props
- > External stiffness matrices (DMIG/OUTPUT4/etc.)
 - > DMIG interface is not specified exactly the same way as when the DMIG was created
 - > Some grounding is almost inevitable with DMIG cards due to truncation of significant figures
 - ➤ This can be avoided by sending DMIG to OUTPUT2
- ➤ Incorrect MPC equations
 - Shows up in N-set check (not G-set)
- > Very poorly formed elements
 - ➤ Check element quality

[F]

 $[F] = [K] \Phi_{RB}$

Nastran Groundcheck: What does it do?

- Identifies constraints and ill-conditioning in the stiffness matrix
- Performs a series of rigid body translations and rotations of the structure
 - > Multiplies the stiffness matrix by the rigid body transformation matrix
- Internal force due to rigid body vectors should be zero for unconstrained structure
- Compares strain energies resulting from six rigid body displacements against a specified threshold
- If the structure is connected properly and not artificially restrained, the structure will "PASS" the rigid body displacement check in all six directions

Nastran Groundcheck: How to Set It Up

Use GROUNDCHECK card in Nastran:

Enable
DATAREC=YES to
print the data
recovery of
grounding forces

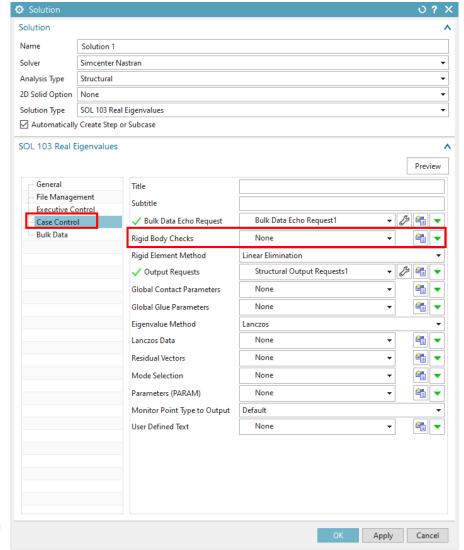
Print groundcheck results to the .f06 file

At a minimum, check G and N sets, but all sets are available in Nastran for this check Groundcheck depends on a reference location

- ➤ If no grid is specified, unit rotations are checked about the origin of the Nastran basic CSYS
- ➤ If the origin is far from the center of the mesh, specify a different grid ID near the geometric center of the assembly

Nastran Groundcheck: How to Set It Up (Femap)

In Femap, ground check is available in the Analysis Set Manager


Analysis Set Manager (Active: 1FreeFreeModes)	- U X
Analysis Set: 1FreeFreeModes Solver: Simcenter Nastran Type: Normal Modes/Eigenvalue Integrated Solver: Simcenter Nastran Options Master Requests and Conditions	Analyze Analyze Multiple Export
No Cases Defined	Active
	Preview Input
	MultiSet
	Сору
	Delete
	Renumber
	Load Save
	Save
	New
	Edit
	Done

NASTRAN Model Check X								
Weight Che	ck	neck						
DOF SET	□G		□F	DOF SET	✓G		□F	
	□N		A		✓N		A	
	N+AUTO	SPC	□ v		□N+AU	TOSPC		
Print Forces Above								
CGI (Ce	enter of Gravi	ty)		✓ DATARE	EC	10.		%
Ref Node		0		Ref Node		0		
Units		0Weig	jht ~	Max Strain	Energy	0.		
Pre	v	Next			OK	Ca	ncel	

Nastran Groundcheck: How to Set It Up (Simcenter)

In Simcenter, ground check is available in the Solution window

Rigid Boo	dy Chec	:ks				⊍? X
odeling C	bject					^
lame	Rigid B	ody Checks	1			
abel	3					
roperties						^
escription						B
						Preview
Grounding		Mass Redu	uction Che	ck		
✓ Enable	GROUN	DCHECK Re	equest			
Output						^
Output M	edium			PRINT		-
Degree of	Freedon	n Sets				٨
ALL						
☑ G						
✓N						
□ N+AU	TOSPC					
□ F	1001 0					
□. □ A						
Reference	Node					^
Select	Referen	ce Node (0)				*
Maximum	Strain E	nergy Thres	hold			^
Thresh	old					
Threshold						-
Groundin	g Forces					^
Data Reco	very			NO		-
Thresh	old					
Percentag	e of Larg	jest Ground	ing Force	0.1		_
					OK	Canad
					OK	Cancel

Nastran Groundcheck: What to look for in .f06 file

- \triangleright By default, the strain energy threshold is set to model's largest diagonal stiffness x 10⁻¹⁰
 - > Stiff springs can increase threshold
 - > You can specify your own threshold in the GROUNDCHECK card in Case Control
 - If you choose the default threshold, verify that it is less than 1
- Typically a good model has strain energies <~0.1, grounding forces <1.0 N, and moments <0.5 N-m.

	SAGE 7570 (GPWG1D) CCHECKS OF MATRIX KGG SIX DIRECTIONS AGAINST	(G-SET) FOLLOW: THE LIMIT OF 1.000000E-02
DIRECTION	STRAIN ENERGY	PASS/FAIL
1	2.000007E-05	PASS
2	4.000005E-05	PASS
3	1.000002E-04	PASS
4	4.985046E+01	FAIL
5	4.464892E+01	FAIL
6	8.216817E+01	FAIL
SOME POSSIBLE REASONS	MAY LEAD TO THE FAILUR	RE:
1. CELASI ELEMENTS	CONNECTING TO ONLY ONE	GRID POINT;
2. CELASI ELEMENTS	CONNECTING TO NON-COINC	CIDENT POINTS;
3. CELASI ELEMENTS	CONNECTING TO NON-COLIN	IEAR DOF;
4. IMPROPERLY DEFIN	NED DMIG MATRICES;	

1	GROUNDCHECK	EXAMPLE					DECEMBER	28, 2005 NX	X NASTRAN 10/15/04	PAGE	12
				GROUND	СНЕСК	FORCES	(G - S E T)		DIRECTION	4	
	POINT ID.	TYPE		T1	Т2	Т3	R1	R2	R3		
	1	G	0.0	0.0		-1.000000E+05	0.0	0.0	0.0		
	2	G	0.0	0.0		1.000000E+05	0.0	0.0	0.0		
1	GROUNDCHECK	EXAMPLE					DECEMBER	28, 2005 NX	X NASTRAN 10/15/04	PAGE	16
									DIRECTION	5	
				GROUND	CHECK	FORCES	(G - S E T)				
	POINT ID.	TYPE		Т1	Т2	Т3	R1	R2	R3		
	44	G	0.0	0.0		-4.410524E+03	-1.344394E+03	1.326177E+	+03 0.0		
	45	G	0.0	0.0		4.436500E+03	0.0	1.330224E+	+03 0.0		
	48	G	0.0	0.0		4.436886E+03	-1.316576E+03	0.0	0.0		
	49	G	0.0	0.0		-4.462862E+03	0.0	0.0	0.0		

Nastran Sets and What They Mean for Groundchecks

- >All degrees of freedom are placed into one or more sets
 - Ex: G set contains all nodes, N set contains G set minus RBE2s, RBE3s, and MPCs
 - > More info on next slides
- ➤ Grounding beyond the N-set is usually not of concern
 - > AUTOSPC process can introduce artificial grounding in N+AUTOSPC set
 - > Constraints introduce grounding in F-set and A-set
 - Ex: if you run groundchecks on a fixed modes run, you would expect to fail for F and A sets because the constrained DOFs are not included in these sets
 - Almost all user-created grounding problems are identified on Gand N-set

Understanding Nastran Sets

- > Response of a FEM defined in terms of DOF
 - ➤ 6 DOF per GRID, 1 DOF per SPOINT/EPOINT
- ➤ All DOF in Nastran placed in sets
 - ➤ G-set: All DOF (except EPOINTs)
 - ➤ M-set: All dependent DOF (RBE2, RBE3, MPC)
 - ➤ N-set: G-set minus M-set (all independent DOF)
 - ➤ S-set: All restrained DOF (user and AUTOSPC)
 - > F-set: All free DOF (N-set minus S-set)
 - > O-set: Interior or "Omitted" DOF
 - ➤ A-set: Solution DOF (F-set minus O-set)
 - ➤ Q-set: Modal DOF
 - > B-set: Physical DOF held fixed in CMS modal solution
 - > C-set: Physical DOF free to vibrate in CMS modal solution

Definition of Supersets from QRG

mutually exclusive sets:

m = constrained by MPCs

s = constrained by SPCs

o = omitted from a-set

q = generalized (modal) dofs

r = rigid-body supports

c = free a-set

b = fixed a-set

c = extra points for dynamics

supersets:

p = physical set = (g + e)

g = global set = (m + n)

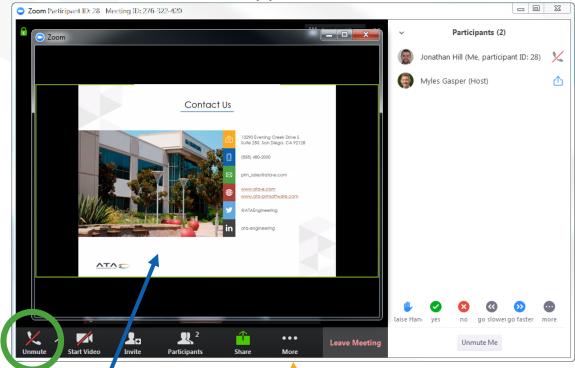
n = independent (not MPCd)

f = free dofs = (o + a)

d = dynamic analysis set

a = analysis set

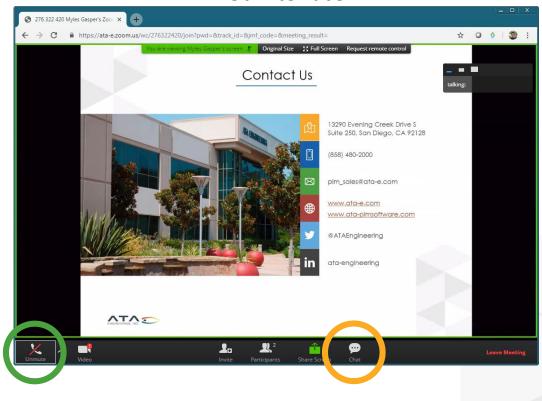
t = total physical boundary dofs


L = boundary dofs left over

Questions?

Submit questions in the chat or unmute yourself now

Zoom Application



Screenshare in separate window

ATA ENGINEERING, INC.

Chat is available under More

Web Interface

Contact Us

13290 Evening Creek Drive S Suite 250, San Diego, CA 92128

(858) 480-2000

plm_sales@ata-e.com

www.ata-e.com
www.ata-plmsoftware.com

@ATAEngineering

ata-engineering

