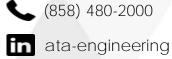


Speakers:

- 1. Adam Green, ATA Engineering Inc.
- 2. Eric Timmer, Rescale
- 3. Chris Ostoich, ATA Engineering Inc.

13290 Evening Creek Drive S, Suite 250, San Diego CA 92128


Driving Innovation with STAR-CCM+, HEEDS, and the Rescale Cloud

Date:	
3/28/2019	
(858) 480-2000	www.ata-e.com
in ata-engineering	@ATAEngineering

Agenda

Driving Innovation with STAR-CCM+, HEEDS, and the Rescale Cloud

- 1. ATA Engineering
- 2. Rescale Cloud Computing
- 3. STAR-CCM+ / HEEDS process
- 4. Q&A

Who We Are

We are an employee-owned small business with a full-time staff of around 150, more than 125 of whom are degreed engineers

14 Registered Professional Engineers

15

Average years of experience

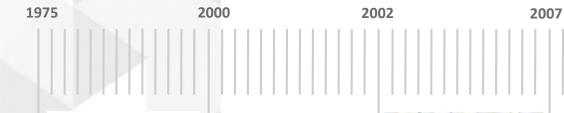
What We Do

ATA Engineering's high-value engineering services help solve the most challenging product design challenges

ATA Engineering - Timeline

ATA opens Denver office

and labels it RMO: Rocky


Mountain Office

2007

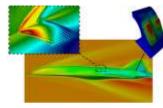
2009

2009

A Legacy of Engineering Excellence: \succ

SDRC was an early pioneer of CAE tools starting in 1967.

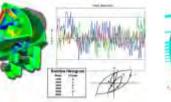
After a series of acquisitions, SDRC was purchased by Siemens and their I-DEAS software was integrated with Unigraphics into the well known NX product line.

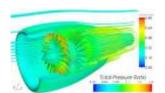


formed in April 2000 after a management buyout from SRDC of the Advanced Test and Analysis Division.

Given this shared corporate heritage, ATA maintains its strong relationship with Siemens today

ENGINEERING, INC.

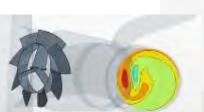




ATA opens Eastern regional Office (ERO) in Herndon VA

2005 ATA opens LA office in the heart of the Southern California Aerospace Industry

ATA opens Huntsville Office


ATA becomes a full VAR for

to service South Eastern

Aerospace clients

and Nastran

2018

2018

2010

ATA extends Siemens VAR relationship to include Sales and Support for STAR-CCM+ & HEEDS

ATA opens Berkeley, California Office

ATA is an Employee Owned Small Business Employee ownership benefits you because our owners:

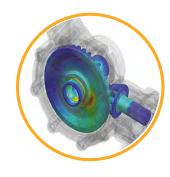
≻take your project personally
>are empowered to make decisions
>love their jobs

➤are efficiency minded

➤recognize the direct link between your satisfaction and their success

➤strive for customer delight

Reference: ATA experience and Sue Butler, Founder/Board Chair and Amanda DeVito, VP of Engagement, Butler/Till Media + Communications, *May I Speak to the Owner*, the ESOP Report, July 2016


Our Services

We provide our customers with complete, integrated solutions

Design

From initial concept development to detailed structural design

Analysis

Comprehensive structural, fluid, acoustic, and thermal analysis services

Test

Industry-leading structural test services for extreme loading environments

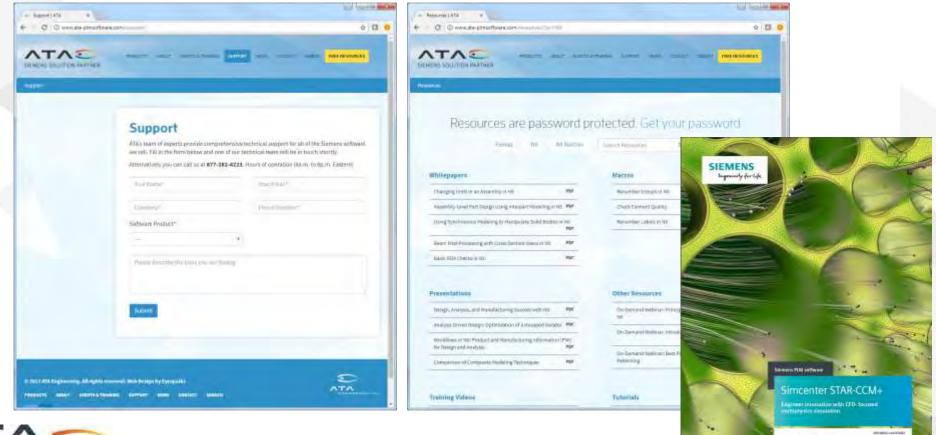
Our Offices

Our 7 nationwide locations provide local full-service capabilities and personal support to our customers

Our Software Services

ATA is a value-added reseller for Siemens PLM Software

- Siemens product lines we support include
 - ➤ STAR-CCM+
 - ➤ HEEDs
 - > AMESIM
 - ≻ Femap
 - Simcenter Nastran
 - ➢ Simcenter 3D
 - ► NX CAD & CAM
 - ➤ Teamcenter
 - ➢ Solid Edge
- Contact the hotline at 877-ATA-4CAE or <u>http://ata-</u>


plmsoftware.com/support

- > Developer of the official NX Nastran training materials
- Preferred North American provider of NX Nastran training

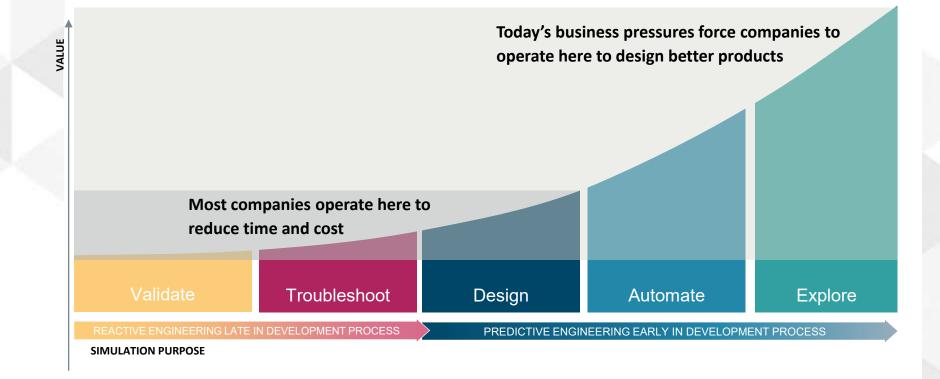
Our Online Resources

www.ata-plmsoftware.com

100

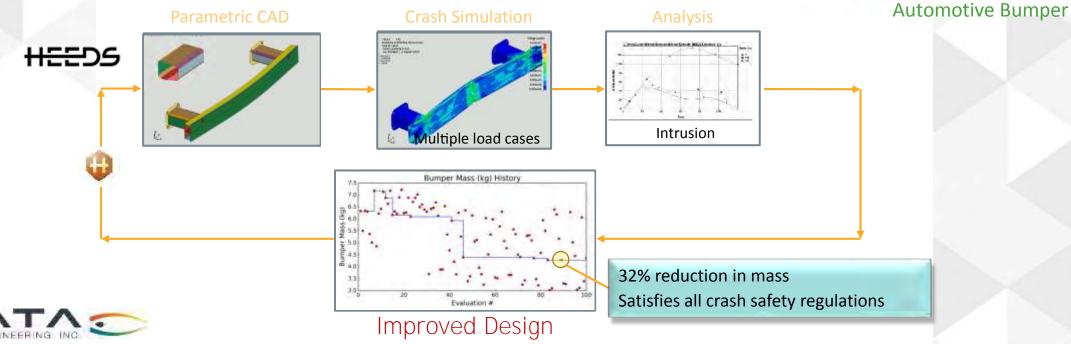
An integrated multiphysics solution for the digital product STAR-CCM+

Realism with multiphysics

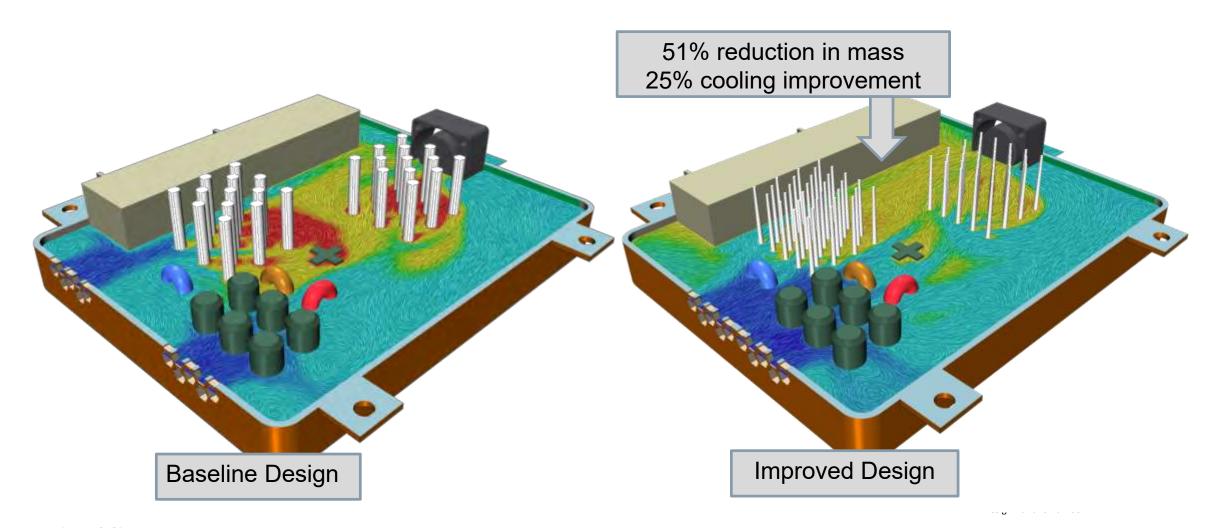

Fluid dynamics Multiphase flows Reacting flows Solid mechanics Particle flows Rheology Electrochemistry Electromagnetics Aero-acoustics Fluid-structure interaction Conjugate heat transfer

STAR-CCM+: An integrated multiphysics solution for the digital product

Innovation with built-in design exploration

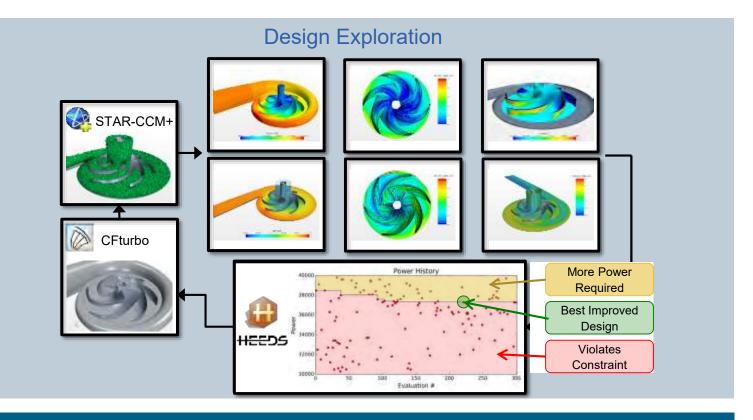

HEEDS: Discover Better Designs, Faster

Design Space Exploration

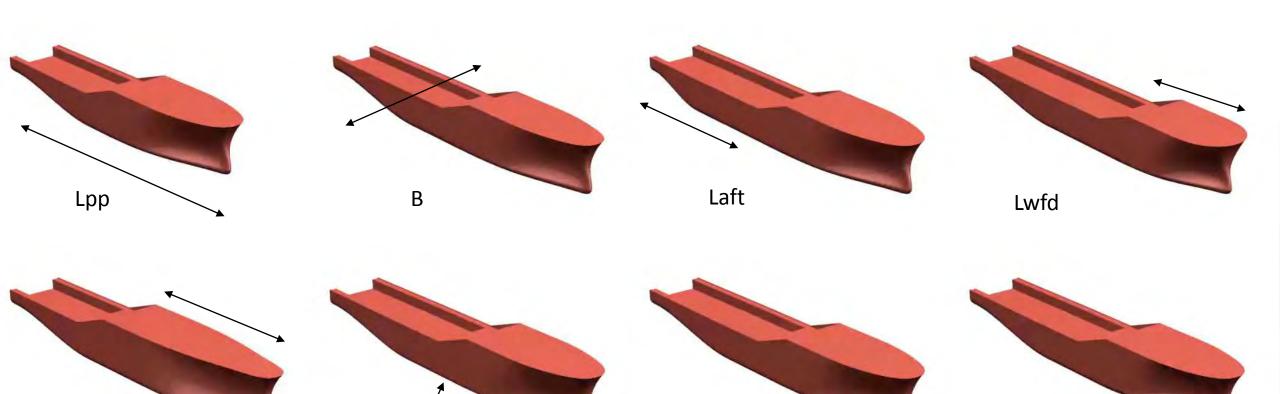

- Process Automation (Automate building of virtual prototype)
- Distributed Execution (Accelerate testing of virtual prototype)
- Efficient Search (Look for better design alternatives)
- Insight & Discovery (Ensure reliable product performance)

Driving Innovation Through Design Exploration

Restricted © Siemens AG 2017


Streamlining the Design Exploration Process

Customer case study: Designing more efficient centrifugal pumps

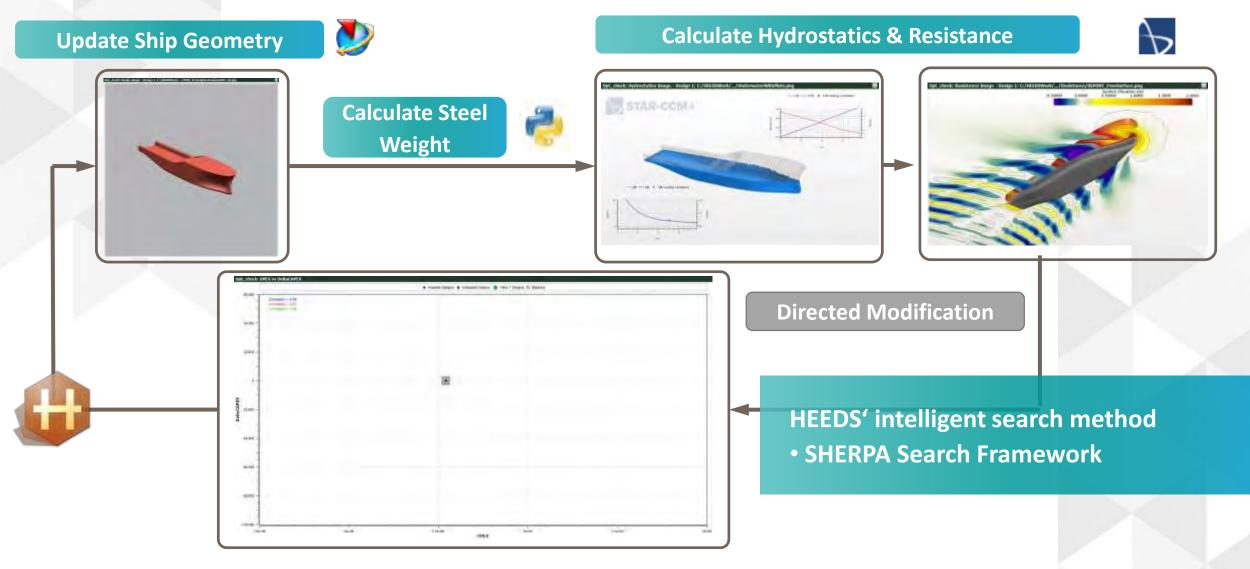

- Efficiently and automatically explored 300 design alternatives
- Searched broad design space globally and locally
- Identified families of designs that delivered better performance than initial baseline design

"I can now obtain better pump designs faster by spending more time on engineering decision-making, and less time on model setup & data transfer."

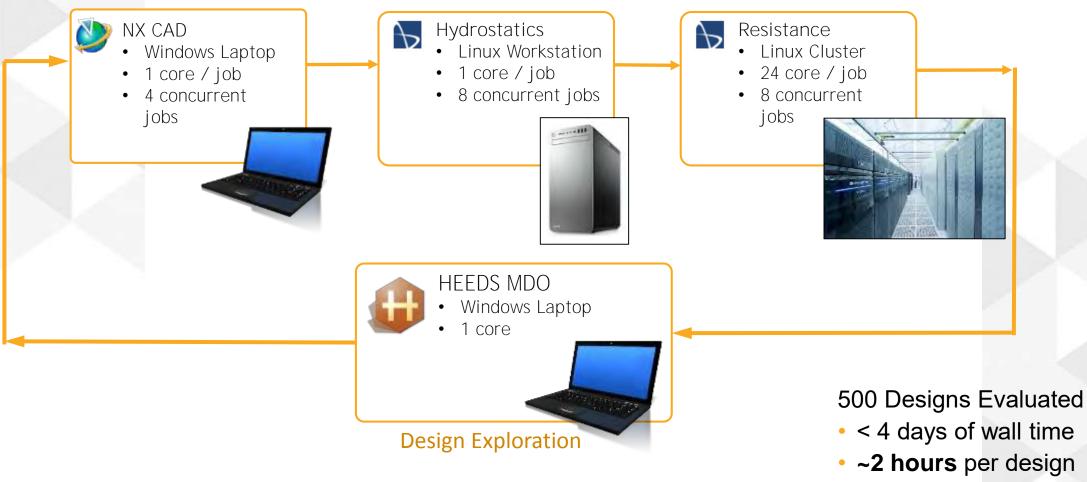
– Ed Bennett, VP of Fluids Engineering

Tcwl

βbow

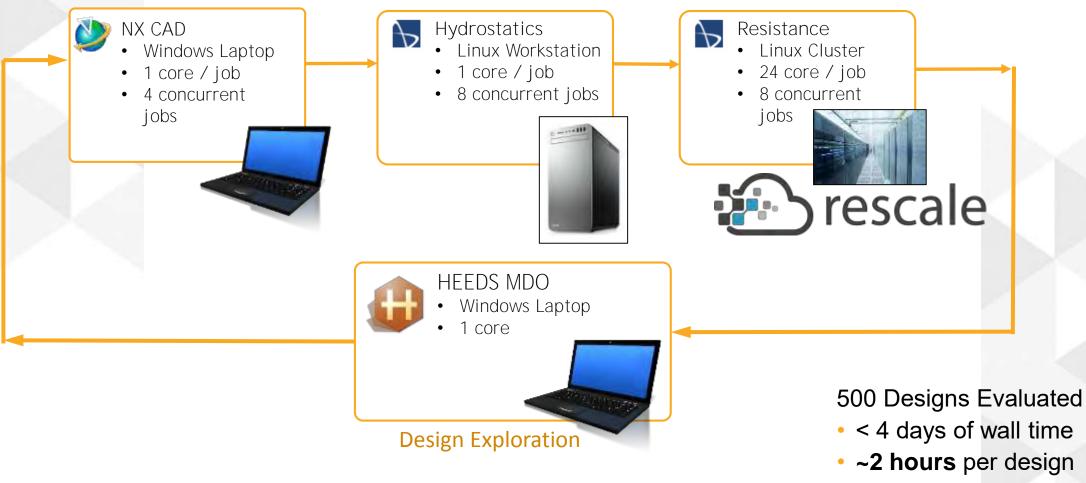

Lfwd2

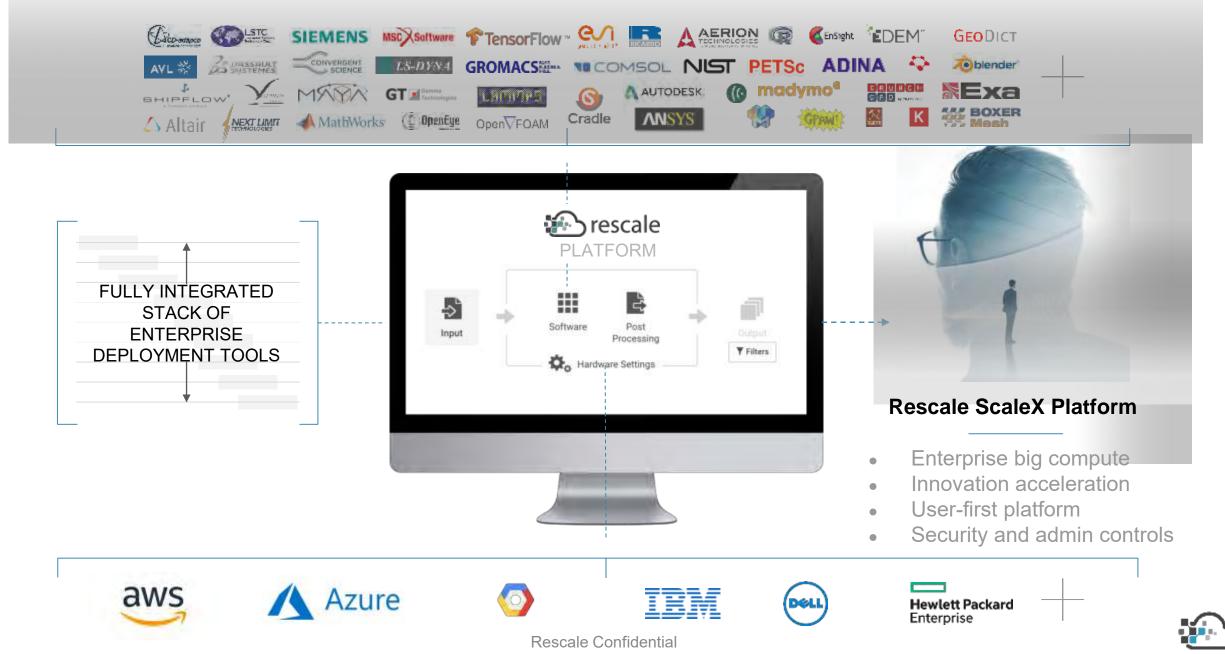
Rbilge


16

Design Space Exploration

Efficient Design Exploration


Design Space Exploration Scalable Computation


18

Design Space Exploration Scalable Computation

The Rescale HPC Platform experience

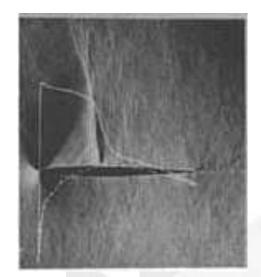
Sending High-Fidelity Multi-Disciplinary Optimization to the Cloud for Transonic Vehicle Design

Date:

March 28, 2019

13290 Evening Creek Drive S, Suite 250, San Diego CA 92128

(858) 480-2000


57

@ATAEngineering

in ata-engineering

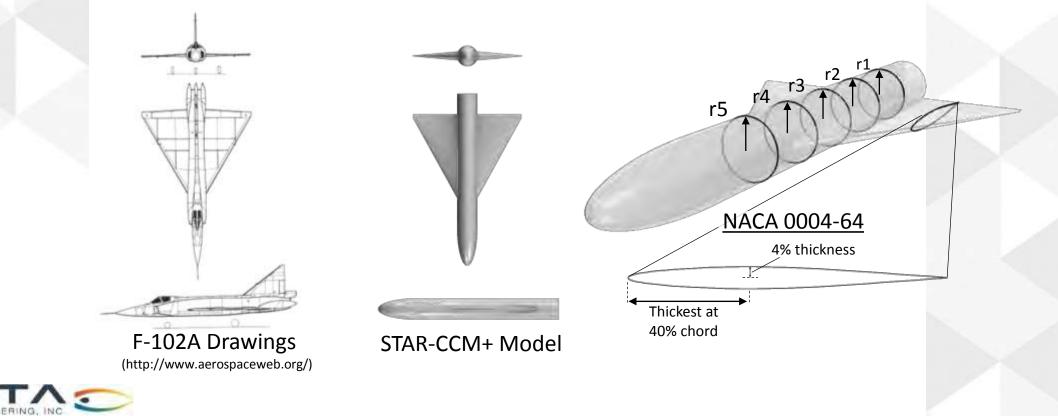
Transonic Flight Development

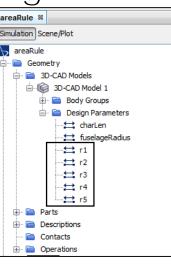
- Large drag increase near speed of sound
 Significant difficulty accelerating past Mach 1
- Schlieren images showed standing shocks on wings leading to wave drag
- Significant breakthrough Whitcomb Area Rule
 Cross-sectional area to have smooth streamwise variation
 - ➤ Fuselage to narrow in vicinity of wings
 - ➤ "Coke Bottle" shape
- Area rule a product of decades-long study due to difficulties with transonic experimentation and understanding!

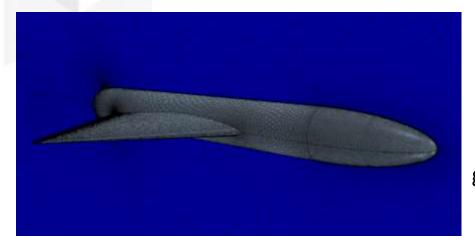
NACA 64A006 Airfoil in Mach 0.79 flow (Beker, J. "The High-Speed Frontier")

Case Study: Convair F-102A

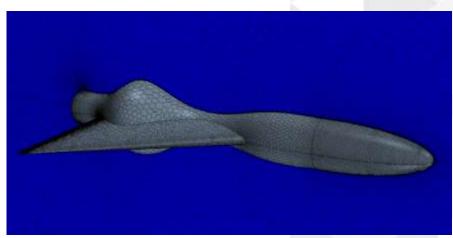
- ➢In 1951, Convair began development on YF-102
- Although powered by Pratt and Whitney J-57 turbojet (US's most powerful engine), YF-102 couldn't break sound barrier
- Area-ruled fuselage allowed aircraft to easily push past the speed of sound to Mach 1.24 resulting in production of F-102A
- ➤Can HEEDS + STAR-CCM+ predict this result in a few days?




Baseline "YF-102" Model

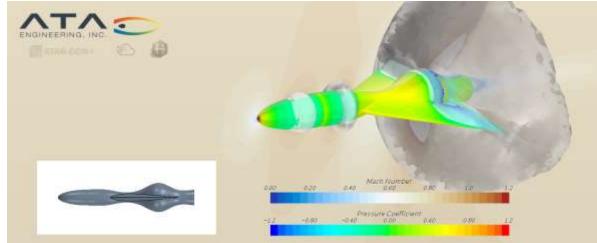

Simplified YF-102 model created in STAR-CCM+ CAD tool
 Fuselage parametrized by 5 equally-spaced mid-body radii
 Delta wing lofted between two NACA 0004-64 airfoils

STAR-CCM+ Seamlessly Remeshes Flow Domain <u>After Geometry Change</u>


Radii defined as exposed parameters
 External CAD package can also be used
 STAR-CCM+ robustly remeshes after parametric geometry changes

 $r2 = 1.08 m \rightarrow 2.0$ r4 = 1.08 m → 0.7

Auto-remesh after geometry modification



STAR-CCM+ Guides User Through Simulation Setup

➤User guided through ➤Powerful and intuitive post-processing capabilities

Easily create reports to interrogate solution for engineering quantities

Drag coefficient created to use as response variable in HEEDS

E Reports I I I I I I I I I I I I I I I I I I I						
dragCoeff - Properties 8						
Properties						
Units	•					
Coordinate System	Laboratory 💌					
Direction	[0.0, 0.0, -1.0]					
Force Option	Pressure + Shear 🔹 💌					
Reference Pressure	0.0 Pa					
Reference Density	1.176675 kg/m^3					
Reference Velocity	312.554 m/s					
Reference Area	3.14*1.08*1.08/4.0					
Parts	[Region: fluid.base, Reg 🝸 🛄					
Tags						
Expert						
Number of Bands	0					
Representation	Volume Mesh 🔹					
Smooth Values						

Computational Model

➢ Physics

- Three Dimensional
- ➤ Steady
- Ideal Gas (Air)
- Coupled Implicit Steady Solver
- RANS with Menter SST Closure Model

➢ Boundaries

- No-slip on vehicle surface
- Symmetry planes intersect at vehicle axis
- Mach 0.9 freestream at 300 K and 1 ATM

≻ Mesh

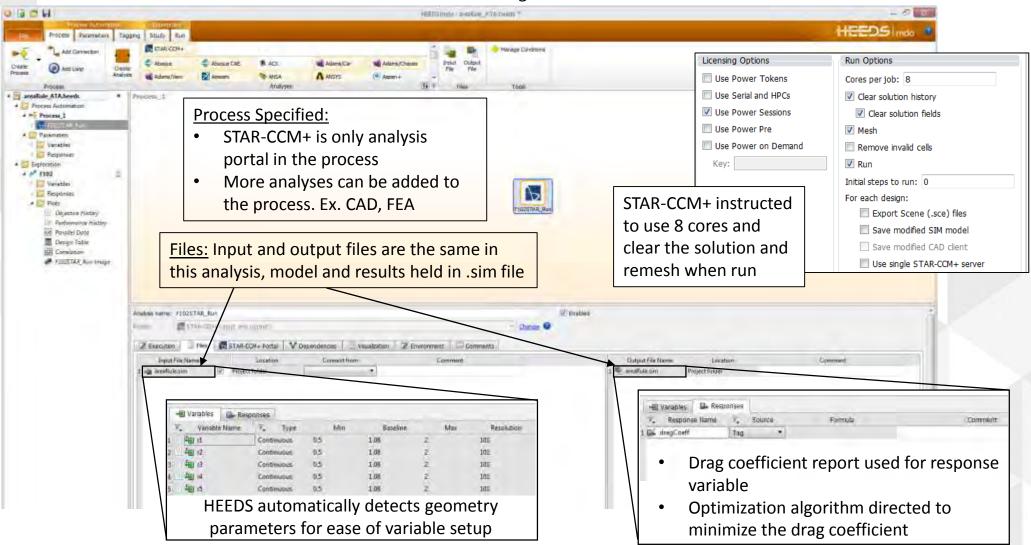
- ➤ 408460 polyhedral and prism cells
- ➢ Solver Details
 - ≻ CFL=20
 - Grid sequencing initialization, expert driver, and continuity convergence accelerator used
 - Stopping criteria set to 1000 iterations, 30 min. on 8 cores

Modest-sized model used for demonstration case but approach can be scaled up to realistic problems

HEEDS Optimization

28

HEEDS SHERPA design space exploration intelligently searches radii ranges to determine minimum drag configuration


Deremeters	Range		Decolution		Response				
Parameters	Minimum	Maximum	Resolution		Variable	Objective			
r1	0.5 m	2 m	101						
r2	0.5 m	2 m	101	$C_D = \frac{Drag}{1/2\rho_\infty U_\infty^2 A}$					
r3	0.5 m	2 m	101			Minimize			
r4	0.5 m	2 m	101		-/ - / 00 0 0011				
r5	0.5 m	2 m	101						

➤Exhaustive search of this design space: 101⁵=10.5 billion simulations

SHERPA finds improved design after 150 evaluations

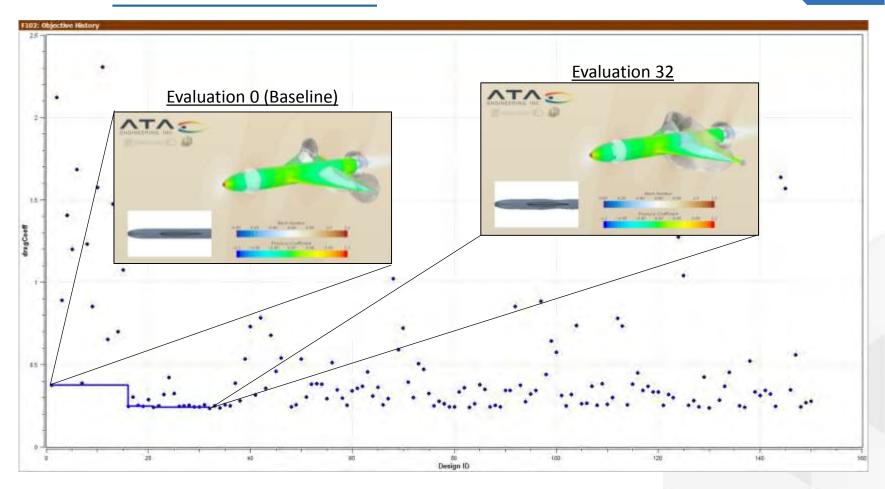
HEEDS Setup is Easy with STAR-CCM+ Analysis Portal

Python-based API Creates Seamless Interface to Resc<u>ale Cloud-Based</u> HPC

 Rescale resource configuration selected from within HEEDS STAR-CCM+ runs performed on rescale cluster In this case an environment variable was defined to point to our company's local license server Power On Demand can be used in lieu of traditional STAR-CCM+ license 	 Create a unique allo Rescale Allocation Op Software used: 	or this analysis with other analyses using the same compute resource cation just for this analysis tions cd_adapco_star_ccm starccm+ -power -batch run -load <input-file> [none] Core Proce Existing cluster: Existing cluster: Create a new cluster: Temporary Persistent Core type: Onyx * Th</input-file>	 type: Onyx etype: Onyx ressor: Intel Xeon E5-2666 v3 (led: 2.9 able memory: 3300 nodes: 1 nocores: 8 core: 0.12 per hour e: 0.96* per hour he total cost will depend on the le study. 	·	S ■ ✓
Analysis name: F102STAR_Run		Number of cores. 6			
Portal: STAR-CCM+ (input and output) Image: Comparison of the state	Estimated time: Additional time:		utes V () utes V ()		
Compute resource: ATA_Rescale 🔻 📝 Resource pre-allocation:	✓ Requested ▼			Анауыз ехесцион с	
Execution command: %HEEDS_STARCCM_CMD% Command options: %CMD_OPTIONS% %INPUTFILE% -batch updateSTARCCM	Model.java		☐ 0 •	Run in: Run condition:	Ana
Num. designs to execute simultaneously: 1				Finished condition:	See

Reduce the risk of wasting cloud computing allocations by troubleshooting in local sandbox.

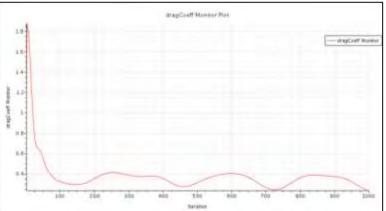
- 1. Develop coarse, low-fidelity model that can run quickly on local machine
 - Allows you to run a few HEEDS evaluations locally to troubleshoot
 Current example: Inviscid, coarse mesh
- 2. Create refined, high-fidelity model locally
 - Current example: Viscosity, turbulence model, resolved boundary layers
- Plug high-fidelity model into already proven HEEDS project
 ➤ Use cloud computing resource to optimize high-fidelity model

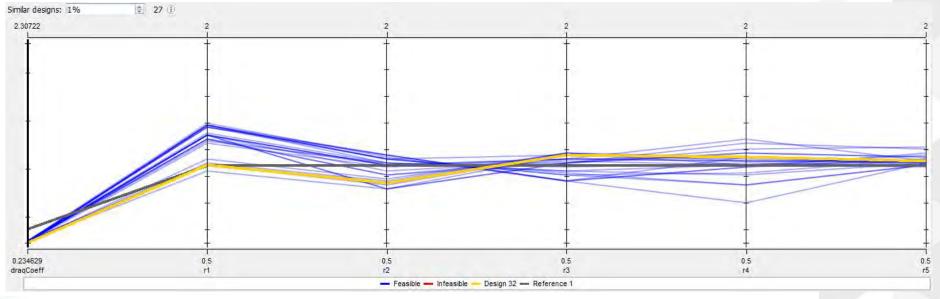

Rescale ScaleX Platform

Running Jobs Monitored through Rescale Portal

NONE.31.1.1										
1 05 AM						1.00	1.01 tone Talli	AL	•	Stop
1.05 AM										141
	5 17 AM	9:29 AM			-	:42 PM			NO	W
Cluster - Started (16 hours 45 minutes) 🚉										
										1
■Live Tailing										
Bur Film	[2013-03/27117/54(022]: 2019-08-27117/54(022]: Expert Driver: Convections Control update. Please	Tante								. 0
December 1	[2019 45-1717);54:032]; Done, [2019 46:12717);54:032];									13
Execute_NONE_intlAnalysis.cmd	[3013-05-27117:54:032]: [3013-05-27117:54:032]: continuity convergence accelerator (tca) steration	update done.								
P_II_I (uzstak_hul_alebrae anti	[MEB-ME-27717:42-072]: Turbulent viscosily limited on 1007 colls in Angles [2009-ME-27717:14:022]: Timotico Continuity x-momentum r	adamitus 7-aca			-	dregoneff				
Bissendal Manad Elfa TAEva av	[2019-04-2717(56:02]: 401 2.770066-02 4.7507696-02 4.66 [2019-04-2717(56:02]: Continuity Convergence Accelerator (CCA) (Teration	update done.	942-82 214847764-82	3.2110046-00	7-81.83776-89	4,2402152-41				
B aresifule sim	[2019-03.27117:54:052]: Turbulent vistosity Limited on 3108 rells in Region [2019-03.27117:54:052]: 002 1.8275010-02 4.6972370-02 4.6	279828-82 3.50899	1e-81 1.588738e-81	Z.587185e-00	5.276755e-09	4,2482436-81				
process_output.log	[2019-08-1717154/062]: Emotimusty Convergence Accelerator (ECA) Iteration [2019-08-27117[54:072]: Furbalent viscosity limited on 3508 cells in Region	n								
ConditeSTARCCMModel pava	[2019-03-27117:541072]: 403 2.7883406-02 4.7074326-02 4.70 [2019-03-27117:541002]: continuity convergence Accelerator (CCA) iteration:	update done.	4e-a2 1.476896e-82	1 2.691438e-89	5.789755e-89	4.24(5526-81				
	[2019-01-27117:54:002]: turbalent viscosity limited no stus cells in Magina [2019-01-27117:54:002]: 404 3.779994e-02 4.6000020-07 4.5		10e-112 3.464363e-112	3.7154680-08	5.5596267-83	4,3447261-01				
f SSH										~
New SSH Seisaion										
Servet IP		Role	e						New	
7.05.005.000.000.000.00		Prov	abon Store						Need	нер

HEEDS Design Optimization

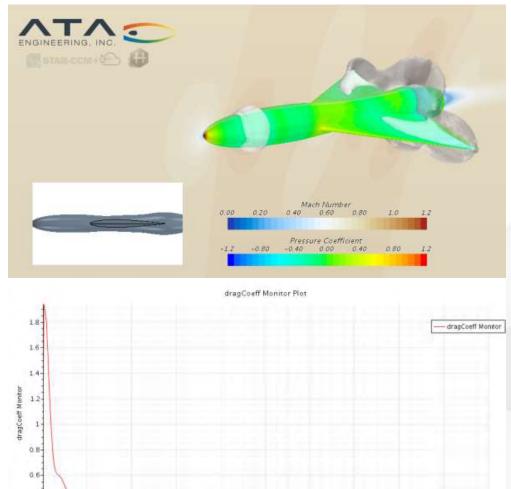

- HEEDS SHERPA explores design space to drive towards objective
- Evaluation 32 (out of 150) found to have the lowest drag coefficient
- Improved fuselage results in 38% reduction in drag



HEEDS Analysis Interrogation Tools

- Evaluation 32 had the lowest C_D at step 1000
 However, it wasn't converged
- HEEDS provides powerful post-processing tools to filter out top performers and determine right solution for you

> 27 designs are within 1% performance of evaluation 32


Alternate Improved Design

0.4-

100

200

- Using HEEDS post-processing tools, evaluation 79 determined to be a successful design variant
- C_D converged at end of STAR-CCM+ analysis
- >35% reduction in C_D from baseline design

Iteration

Scalability

Small demonstration case took 799 CPU-hours to improve design 35% over 150 evaluations in 4 days with minimal analyst setup

➢ Using Rescale resource "Onyx" costs \$0.12/CPU-hr

- Hardware cost to improve design on Rescale resources was \$95.83
 Not including cost of STAR-CCM+ licensing
- Assuming perfect scaling, a similar 20 million cell study would cost \$4700 on 400 cores.

≻The cost of a 400-core cluster would be ~\$200,000

➤ Assumptions

- ➢ Room available with sufficient cooling and clean and reliable power
- ➤ Existing network with safe, reliable, and fast storage (many TB)
- ➢ Racks exist to hold HPC hardware
- A dedicated staff member would be needed to maintain the system and infrastructure

Needed to design an aircraft fuselage with a lower drag coefficient in transonic flight

- ➤Used HEEDS Design Space Exploration software with STAR-CCM+ flow solver utilizing Rescale cloud-based HPC resources to find a better design
- ➤The virtually hands-off method produced a design with a 35% reduction in drag coefficient
- ➢HEEDS produced an improved aircraft design based on highfidelity STAR-CCM+ predictions and minimal analyst effort utilizing affordable Rescale cloud-based HPC resources

Contact Us

13290 Evening Creek Drive Suite 250, San Diego, CA 92128

(858) 480-2000

sales@ata-e.com

www.ata-e.com www.ata-plmsoftware.com

@ATAEngineering

ata-engineering

